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ABSTRACT
BACKGROUND: Overarching conceptualizations propose that the complex social-emotional effects of oxytocin
(OXT) in humans are partly mediated by interactions with other neurotransmitter systems. Recent animal models
suggest that the anxiolytic effects of OXT are critically mediated by the serotonin (5-HT) system, yet direct
evidence in humans is lacking.
METHODS: To determine the role of 5-HT in OXT-induced attenuation of amygdala threat reactivity and sensitization/
desensitization, we conducted a parallel-group, randomized, placebo-controlled, double-blind experiment during
which 121 healthy subjects underwent a transient decrease in 5-HT signaling via acute tryptophan depletion or the
corresponding placebo-control protocol before the administration of intranasal OXT or placebo intranasal spray,
respectively. Mean and repetition-dependent changes in threat-specific amygdala reactivity toward threatening
stimuli (angry faces) as assessed by functional magnetic resonance imaging served as the primary outcome.
RESULTS: No main or interaction effects of treatment on amygdala threat reactivity were observed, yet OXT switched
bilateral amygdala threat sensitization to desensitization, and this effect was significantly attenuated during
decreased central 5-HT signaling via pretreatment with acute tryptophan depletion.
CONCLUSIONS: The present findings provide the first evidence for a role of OXT in threat-specific amygdala
desensitization in humans and suggest that these effects are critically mediated by the 5-HT system. OXT may
have a therapeutic potential to facilitate amygdala desensitization, and adjunct upregulation of 5-HT
neurotransmission may facilitate OXT’s anxiolytic potential.

https://doi.org/10.1016/j.bpsc.2021.04.009
The hypothalamic peptide oxytocin (OXT) regulates a broad
range of peripheral and central functions (1). Across species,
OXT plays an important role in complex social behavior and
basal emotion processes, particularly salience and threat
processing (2). Overarching conceptualizations of the role of
OXT in human social-emotional behavior have proposed that
the complex behavioral effects of OXT are partly mediated by
interactions with other neurotransmitter systems (3). Such in-
teractions have been evidenced by initial animal models
demonstrating that OXT’s effects in the domains of pair
bonding are partly mediated by dopamine (4), whereas social
reward and anxiolytic effects involve interactions with the se-
rotonin (5-HT) system (5–7).

Accumulating evidence further suggests that the anxiolytic
properties of OXT are (partly) mediated by the 5-HT system.
Direct evidence for a role of 5-HT in OXT’s anxiolytic effects
has been demonstrated in a seminal rodent model combining
genetic editing with OXT infusion (7). This study demonstrated
that OXT receptors are expressed in one third of the 5-HT
releasing neurons in the raphe nucleus, which represents the
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principal source of central 5-HT as well as afferent seroto-
nergic projections to the amygdala (8). More recently, initial
studies combined intranasal or intracerebroventricular OXT
administration with concomitant molecular imaging of 5-HT
neurotransmission in nonhuman primates and humans and
reported OXT-induced modulations of serotonergic signaling in
regions strongly engaged in salience and threat processing,
particularly the amygdala and insula, with further analyses
suggesting a central role of the amygdala in the oxytocinergic
regulation of 5-HT release (6,9).

To directly examine whether the anxiolytic effects of OXT on
threat-related amygdala reactivity in humans are mediated by
the 5-HT system, we conducted a parallel-group, randomized,
placebo-controlled, double-blind functional magnetic reso-
nance imaging (fMRI) experiment during which 121 healthy
male participants underwent either transient decreases in 5-HT
signaling (via acute tryptophan depletion [ATD1]) or a matched
control protocol (ATD2) before the administration of intranasal
OXT or placebo (PLC). Based on previous animal models, we
specifically hypothesized that 1) OXT would dampen amygdala
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threat reactivity to angry faces relative to placebo and 2) pre-
treatment with 5-HT depletion would attenuate OXT-induced
dampening of amygdala responses relative to OXT treatment
alone.

Amygdala responses show rapid adaptations with repeated
stimulus presentations, with both reduced (desensitization)
(10–12) and increased (sensitization) reactivity (13–15) being
reported depending on the respective amygdala subregions
involved and emotional content. Furthermore, a higher retest
reliability of repetition-dependent amygdala signal changes
was found when compared with mean amplitude measure-
ments, suggesting a particular stable marker for pharmaco-
logical imaging [e.g., (16)]. Although a number of previous
studies suggest that amygdala sensitization/desensitization is
modulated by serotonergic signaling (17) and that OXT may
modulate arousal and amygdala habituation in trust and
cooperation contexts (18,19), the role of OXT for threat-related
habitation is still unclear. Therefore, we additionally explored
the interactive effects of OXT and 5-HT on sensitization/
desensitization, employing a comparable analysis strategy as
for amygdala mean amplitudes. Given that previous rodent
models demonstrated that OXT regulates amygdala threat re-
sponses via direct hypothalamic-amygdala neuronal pro-
jections (20) as well as indirect pathways via OXT receptors
expressed on serotonergic raphe neurons (7), we hypothesized
that downregulation of serotonergic signaling would decrease
but not fully abolish the effects of intranasal OXT on amygdala
threat reactivity. Finally, although amygdala desensitization as
assessed by the mean of a block difference approach repre-
sents a robust and comparably reliable within-subject fMRI
index (21), we additionally included an independent dataset to
determine the robustness of threat-specific amygdala sensiti-
zation/desensitization across samples.
METHODS AND MATERIALS

Participants

A total of 121 right-handed, healthy male participants were
enrolled. To reduce variance related to sex differences in the
effects of oxytocin on amygdala reactivity (22), only male
participants were included. Given the complexity of the design,
a pragmatic approach for sample size determination was
employed based on a recent fMRI study (23) comparing effects
of different OXT dosages on threat-related amygdala activity
[for a similar approach, see a recent study comparing OXT with
another anxiolytic agent (24)]. For the behavioral and mood
analysis, based on initial quality assessments, data from 9
subjects were excluded owing to technical problems during
data acquisition, poor performance (accuracy .3 SD from
mean accuracy), or exclusion criteria. During subsequent
quality assessment of the MRI data, 1 subject was further
excluded from the fMRI analyses owing to poor normalization
quality (for details see CONSORT flowchart, Figure S1). We
used the compromise option in G*power (version 3.1.9.4;
https://www.softpedia.com/get/Science-CAD/G-Power.shtml)
to estimate power using the number of subjects in the main
analyses of treatments (two-way analysis of variance [ANOVA]:
amino acid mixture 3 intranasal spray) with an expected me-
dium effect size (hp

2 = 0.06), which revealed 87% power.
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Study protocols were approved by the ethics committee
(University of Electronic Science and Technology of China) and
adhered to the latest revision of the Declaration of Helsinki.
Written informed consent was obtained, and the study was
preregistered on clinicaltrials.gov (https://clinicaltrials.gov/ct2/
show/NCT03426176, NCT03426176).

Procedure

The present study employed a between-subject, randomized,
double-blind pharmacological fMRI design incorporating 4
treatment groups that received combinations of ATD1 (ATD1

vs. ATD2 drink) and intranasal OXT (OXT vs. placebo nasal
spray). Participants were instructed to abstain from alcohol
and caffeine for 24 hours and from food and drinks (except
water) for 12 hours before the experiment. To adhere to the
pharmacodynamic profile of the treatments, participants
arrived between 7:30 AM and 10:00 AM and underwent fMRI
acquisition between 1:30 PM and 4:00 PM. Upon arrival, par-
ticipants received a standardized protein-poor food for
breakfast. After the assessment of pretreatment control vari-
ables, participants were administered either a tryptophan-
depleted amino acid mixture to induce ATD1 or a control
drink, which was balanced in tryptophan and thus did not
induce acute tryptophan depletion (ATD2), followed by a 5-
hour resting period to achieve a robust reduction in trypto-
phan levels. During the resting period, participants were asked
to relax, and magazines were provided. Subsequently, control
variables were assessed, and 5 hours after the amino acid
drink, participants self-administered either OXT (24 IU) or PLC
nasal spray (standardized according to previous OXT admin-
istration studies) (25). In line with the pharmacokinetic profile of
intranasal OXT (23), the fMRI paradigm was scheduled 50
minutes after OXT administration. Control variables were
assessed before and after fMRI acquisition (for schematic
outline of the experimental protocols, see Figure 1).

Control Variables

To control for between-group differences in depressive
symptom load, anxiety, and current stress, the Beck Depres-
sion Inventory (26), State-Trait Anxiety Inventory (27), and
Perceived Stress Scale (28) were administered before treat-
ment. To assess the effects of treatment on mood during the
entire experimental procedure, the Positive and Negative
Affect Schedule (29) was repeatedly administered before
administration of the amino acid drink (T1) and the nasal spray
(T2) as well as immediately before MRI acquisition (T3) and at
the end of the experiment (T4).

Serotonin Dietary Manipulation (Oral
Administration)

A previously validated dietary drink inducing ATD1 and a
control protocol (ATD2) (30,31) was used to temporarily lower
central 5-HT level (ATD1 group) in a randomized, double-blind,
placebo-controlled, between-subject design (Supplement).

OXT (Intranasal Administration)

OXT nasal spray comprised OXT, glycerin, sodium chloride,
and purified water, whereas the PLC nasal spray included
identical ingredients except for OXT (both provided in identical
November 2021; 6:1081–1089 www.sobp.org/BPCNNI
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Figure 1. Experimental design and treatment
protocols. ATD1, acute tryptophan depletion; ATD2,
no acute tryptophan depletion (control treatment for
ATD); fMRI, functional magnetic resonance imaging;
OXT, oxytocin; PANAS, Positive and Negative Affect
Schedule; PLC, placebo (for oxytocin); T, time.
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spray bottles by Sichuan Meike Pharmaceutical Co Ltd). In line
with previous intranasal OXT administration studies (32), a
single dose of 24 international units was administered with 3
puffs per nostril.

Experimental Paradigm

The blocked-design fMRI paradigm has been previously vali-
dated and demonstrated to produce robust amygdala re-
sponses in response to threatening (angry) faces (21,33). The
paradigm consisted of 3 runs, and every run comprised 6
blocks of facial stimuli as well as 2 blocks of nonfacial stimuli
serving as nonsocial control stimuli. During the face-
processing blocks, a trio of condition-specific (neutral, angry,
or happy expressions) facial stimuli was presented, and sub-
jects were required to select one of the two faces (bottom) that
was identical to a target face (top). Each block comprised 4
condition-specific trials, balanced for gender. Asian facial
stimuli were selected from a standardized Asian facial
expression database (34). During the nonsocial control blocks,
a trio of simple geometric shapes (circles and ellipses) was
presented, and subjects were required to select one of the two
shapes (bottom) that matched the target shape presented on
the top (Figure 1B). Each control block comprised 4 different
shape trios. All blocks were preceded by a brief instruction
(face match or shapes match) that lasted 2 seconds. Within
each block, each trial was presented for 4 seconds with a
variable interstimulus interval of 1–3 seconds (mean, 2 s). The
total block length was 24 seconds, and the total paradigm
lasted 16 minutes 48 seconds.

MRI Data Acquisition and Processing

MRI data was acquired on a 3T MRI system and preprocessed
using routines in SPM 12 (Wellcome Department of Cognitive
Biological Psychiatry: Cognitive Neuroscience and Neuroima
Neurology, Institute of Neurology, London, United Kingdom;
see the Supplement). On the first level, a general linear model
was employed and included condition-specific regressors
modeling the experimental conditions, the cue-phase, and the
6 head motion parameters. To examine (de)sensitization ef-
fects, a separate first-level model was designed, which addi-
tionally modeled the blocks separately. The corresponding
design matrices were convolved with the default SPM hemo-
dynamic response function. The design matrices additionally
included a high-pass filter to control for low-frequency com-
ponents and a first-order autoregressive model to account for
autocorrelation in the time series. To evaluate our a priori hy-
potheses, analyses focused on threat-specific brain activity
using (angry . neutral faces) as the primary contrast of
interest.
Statistical Analysis

Effects on Mean Amygdala Threat Reactivity. Effects
on threat-related amygdala reactivity were examined using a
standard general linear model approach employing the mean
contrast of all angry facial expression blocks relative to neutral
faces (angryall-block . neutralall-block). On the second level, ef-
fects of treatment were examined by means of mixed ANOVA
models including treatments (amino acid mixture, ATD1/ATD2,
and intranasal spray OXT/PLC) as between-subject factors.

Effects on Amygdala Threat Sensitization/Desensi-
tization. Effects on amygdala threat sensitization/desensi-
tization were analyzed using the mean of a block difference
model including the first and last block (last block minus first
block), which is more sensitive than the means of the
regression approach with respect to complex nonlinear de-
pendencies during habituation (35). To this end, amplitude
ging November 2021; 6:1081–1089 www.sobp.org/BPCNNI 1083
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differences between the first block in the first run and the
corresponding last block in the last run were calculated. To
separate threat-specific amygdala habituation from
nonspecific habituation to facial stimuli [e.g., (36)], the pri-
mary outcome employed a subtraction of the neutral facial
stimuli ([angrylast-block 2 neutrallast-block] . [angryfirst-block 2

neutralfirst-block]). These contrast images were subjected to
second-level mixed ANOVA models including amino acid
mixture (ATD1 vs. ATD2) and intranasal spray (OXT vs. PLC)
as between-subject factors.

A Priori Region of Interest and Statistical
Thresholding. In line with our regional a priori hypotheses,
previous evidence that the anxiolytic effects of OXT in ro-
dents and humans are mediated by the amygdala, and a
central role of the amygdala in OXT-induced 5-HT release in
humans (9), analyses focused on the amygdala as a priori
region of interest. To this end, a bilateral mask for the entire
left and right amygdalae were defined using the Automatic
Anatomical Labelling template (37) and employed for fam-
ilywise error (FWE) correction using a small-volume correc-
tion (pFWE , .05). An additional exploratory whole-brain
analysis was computed to explore treatment interaction ef-
fects in regions outside of the a priori defined region of in-
terest using a whole-brain threshold of pFWE , .05. For post
hoc comparisons, individual parameter estimates were
extracted from the amygdala mask. To evaluate our hy-
potheses, post hoc comparisons focused on comparing the
treatment groups with the respective PLC-treated reference
groups.

Robustness of Threat-Specific Amygdala Sensitization/
Desensitization. To further determine the robustness of
threat-specific amygdala sensitization/desensitization, we
included data from an independent sample of 25 healthy males
who underwent a control protocol (ATD2) administration before
fMRI acquisition with a similar block design paradigm (for details
see the Supplement). In line with the analysis in the original
sample, the second-level analysis focused on the sensitization/
desensitization contrast ([angrylast-block 2 neutrallast-block]
. [angryfirst-block 2 neutralfirst-block]).
RESULTS

Sample Characteristics, Confounders, and Mood

There were no pretreatment group differences in age,
depressive symptoms, anxiety, current stress levels, and
mood (all p . .16; for details see Table 1). Examining effects
of treatment on mood during the course of the experiment by
means of mixed ANOVA models with amino acid mixture
(ATD1 vs. ATD2) and intranasal spray (OXT vs. PLC) as
between-subject factors and time point (T1–T4: pre-oral
administration, pre-intranasal administration, pre-fMRI,
post-fMRI) as within-subject factor revealed a significant
main effect of time on both positive (F3,306 = 20.03, p , .001,
h2

p = 0.164) and negative (F3,306 = 14.73, p , .001, h2
p =

0.126) affect, suggesting a general decrease of mood over
the experiment. Moreover, a significant interaction effect of
ATD and OXT on negative affect (F1,102 = 7.99, p = .006, h2

p =
1084 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
0.073) was observed, with post hoc analyses suggesting that
when the participants received OXT treatment after ATD1,
they reported higher negative affect as compared with the
ATD2 condition (p , .01), while when participants received
PLC treatment after ATD1, they reported no significant dif-
ference as compared with the ATD2 condition (p = .33). This
suggests that in line with some previous studies using the
same acute tryptophan depletion protocols (31), ATD1

treatment alone did not affect mood in healthy individuals.

Behavioral Results

Examining accuracy and response times by means of mixed
ANOVAs with condition (angry face vs. happy face vs. neutral
face vs. geometric shape) as within-subject factor and amino
acid mixture (ATD1 vs. ATD2) and intranasal spray (OXT vs.
PLC) as between-subject factors revealed no significant effects
of treatment on accuracy and reaction time, arguing against
potential confounding effects of treatment on basal attention
and vigilance (for details see the Supplement).

Effects on Mean Threat-Related Amygdala
Amplitude

We conducted a one-sample t test with the contrast
(angryall-block . neutralall-block) to validate the paradigm and
found that threatening stimuli induced increased bilateral
amygdala activation (for details see the Supplement and
Figure S2). Contrary to our hypothesis, no significant main or
interaction effects of ATD and OXT on amygdala threat reac-
tivity were observed (contrast [angryall-block . neutralall-block]).

Effects on Amygdala Threat Sensitization/
Desensitization

Examination of treatment effects on threat-specific amygdala
sensitization/desensitization by means of voxelwise ANOVA
models including the between-subject factors treatment
(amino acid mixture [ATD1 vs. ATD2] and intranasal spray
[OXT vs. PLC]) revealed a significant time (first block vs. last
block) 3 treatment interaction effect in the bilateral amygdala
(left: MNI [221,23,215], pFWE = .008, k = 20, t107 = 3.64; right:
MNI [18,23,215], pFWE = .019, k = 1, t107 = 3.25; small volume
corrected for the bilateral amygdala mask) (Figure 2). Post hoc
comparisons on the extracted parameter estimates from the
amygdala mask (contrast of interest, angrylast-block 2 neu-
trallast-block . angryfirst-block 2 neutralfirst-block) revealed that the
PLC-treated reference group (ATD2-PLC) demonstrated
increased amygdala responses, suggesting threat-specific
sensitization rather than habituation of the amygdala.
Compared with the reference group, OXT (ATD2-OXT)
switched amygdala sensitization to desensitization as reflected
by significantly decreased threat-specific amygdala responses
(false discovery rate-corrected p (pFDR) , .001; Cohen’s d =
0.99), while decreased serotonin signaling by ATD1 pretreat-
ment before OXT administration significantly attenuated this
effect of OXT (ATD2-OXT vs. ATD1-OXT, pFDR = .038; Cohen’s
d = 0.52). In addition, there was no significant difference be-
tween ATD1-PLC group and ATD2-PLC group (t53 = 1.05, p =
.30). An additional post hoc analysis on the condition-specific
parameter estimates (neutrallast-block . neutralfirst-block and
angrylast-block . angryfirst-block, respectively) employing a
November 2021; 6:1081–1089 www.sobp.org/BPCNNI
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Table 1. Sample Characteristics (n = 111)

Characteristics ATD1-OXT (n = 28) ATD1-PLC (n = 26) ATD2-OXT (n = 28) ATD2-PLC (n = 29) p Value

Age, Years 21.89 6 2.39 21.73 6 2.66 22.24 6 2.29 22.10 6 2.13 .86

STAI-Trait 41.79 6 8.00 41.00 6 5.85 38.72 6 7.97 40.83 6 7.00 .43

STAI-State 38.77 6 8.81 35.16 6 6.36 34.71 6 8.50 35.43 6 6.64 .21

BDI 6.07 6 6.44 8.08 6 6.05 4.90 6 6.40 5.21 6 4.97 .21

PSS 14.50 6 5.45 15.42 6 5.25 13.59 6 4.69 15.41 6 4.58 .46

PANAS-P (T1) 24.19 6 7.17 24.08 6 8.38 24.46 6 6.95 26.04 6 8.07 .76

PANAS-N (T1) 15.88 6 9.18 13.04 6 6.09 11.75 6 5.02 13.43 6 5.95 .16

Values are presented as mean 6 SD.
ATD1, acute tryptophan depletion; ATD2, no acute tryptophan depletion (control treatment for ATD); BDI, Beck Depression Inventory; OXT,

oxytocin; PANAS-N, Positive and Negative Affect Schedule–Negative affect; PANAS-P, Positive and Negative Affect Schedule–Positive affect;
PLC, placebo (for oxytocin); PSS, Perceived Stress Scale; STAI-TAI, State-Trait Anxiety Inventory; T1, time point 1 (pretreatment assessment).
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two-way ANOVA with treatments as between-subject factors
aimed at further exploring whether the observed treatment
effects were specifically driven by the angry face condition. A
lack of significant effects on neutral faces in the context of a
significant difference between the ATD2-PLC group and
ATD2-OXT (pFDR = .003; Cohen’s d = 0.83) and between the
ATD2-OXT and ATD1-OXT (pFDR = .037; Cohen’s d = 0.55) for
the angry condition (angrylast-block . angryfirst-block) (Figure 3)
further confirmed effects on threat-specific sensitization/
desensitization.

Additional control analysis examining effects of treat-
ment on sensitization/desensitization to positive stimuli
(happylast-block 2 neutrallast-block . happyfirst-block 2 neu-
tralfirst-block) and nonsocial stimuli (shapeslast-block .

shapesfirst-block) did not reveal significant differences,
further suggesting threat-specific effects.

Exploratory Whole-Brain Analysis

In line with our hypothesis, the primary analysis focused on the
amygdala. In addition, an unrestricted exploratory whole-brain
analysis was conducted on the voxel level. Results from this
analysis revealed a significant time 3 treatment effect in
cortical midline regions, insula, and the bilateral superior
temporal gyrus (for details see the Supplement and Figure S3).
pFDR , .05; ***significant post hoc differences at pFDR , .001. ATD1, acute tryp
for ATD); FDR, false discovery rate; FWE, familywise error; OXT, oxytocin; PL

Biological Psychiatry: Cognitive Neuroscience and Neuroima
Robustness and Replicability of Threat-Specific
Amygdala Desensitization

Data from an independent validation sample of 25 healthy
male subjects was employed to determine the robustness of
the threat-specific amygdala sensitization observed in the
control group (ATD2-PLC). A voxelwise second-level analysis
of the sensitization/desensitization contrast (angrylast-block 2

neutrallast-block . angryfirst-block 2 neutralfirst-block) confirmed
threat-specific bilateral amygdala sensitization (pFWE , .001) in
the validation sample (see the Supplement and Figure S4).

DISCUSSION

Overarching conceptualization suggests a modulatory influ-
ence of OXT on 5-HT signaling, and animal models demon-
strated a functional relevance of this interaction for the
anxiolytic potential of OXT. Building on these previous find-
ings, the present pharmacological fMRI study employed an
experimental protocol to reduce central 5-HT signaling before
the administration of intranasal OXT to determine the role of
5-HT in mediating OXT-induced attenuation of amygdala
threat reactivity. In contrast to our hypothesis, no effects on
the mean amplitude of amygdala threat reactivity were
observed; however, further analyses on repetition-dependent
threat-related amygdala reactivity revealed a sensitization of
Figure 2. Effect of treatment on threat-specific
amygdala sensitization/desensitization. The
threat-specific effect in the bilateral amygdala is
displayed at pFWE-SVC , .05 thresholded for the
entire bilateral amygdala. The color bar codes the t
value. Bars on the right correspond to the extrac-
ted estimates for threat-specific sensitization/
desensitization ([angrylast-block 2 neutrallast-block] .
[angryfirst-block 2 neutralfirst-block]) for each treat-
ment group. Results indicate that after placebo
treatment (ATD2-PLC), the bilateral amygdala
exhibited threat sensitization, which was switched
to desensitization after administration of oxytocin
(ATD2-OXT), and that this effect of oxytocin was
significantly attenuated yet not fully abolished after
pretreatment with acute tryptophan depletion
(ATD1-OXT). *Significant post hoc differences at

tophan depletion; ATD2, no acute tryptophan depletion (control treatment
C, placebo (for oxytocin); SVC, small volume correction.
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http://www.sobp.org/BPCNNI


Figure 3. Condition-specific amygdala sensitization/desensitization.
Condition-specific parameter estimates for amygdala sensitization/desen-
sitization for angry and neutral faces. Bars correspond to the extracted
estimates for the identified amygdala region and suggest threat-specific
differences between the treatment groups. *Significant post hoc differ-
ences at pFDR , .01; **significant post hoc differences at pFDR , .05. ATD1,
acute tryptophan depletion; ATD2, no acute tryptophan depletion (control
treatment for ATD); FDR, false discovery rate; OXT, oxytocin; PLC, placebo
(for oxytocin).
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the bilateral amygdala with repeated presentation of threat-
ening faces after control treatment (ATD2-PLC), which was
switched to desensitization after OXT administration (ATD2-
OXT), and showed that this effect of OXT was attenuated after
decreased central serotonin signaling via pretreatment with
ATD1 (ATD1-OXT). Together, these findings provide the first
evidence that OXT facilitates amygdala threat desensitization
and that this effect is (partly) mediated via a 5-HT–dependent
mechanism.

In contrast to our hypothesis, no effects of OXT on the
mean amplitude of amygdala threat reactivity were observed,
which might be related to the specific threat stimuli chosen.
We chose angry faces as direct threat stimuli, and while
previous studies demonstrated convergent evidence for a
serotonergic modulation of amygdala reactivity to angry as
well as fearful faces (38), the effects of intranasal OXT on
amygdala threat processing appear to depend strongly on the
specific emotion of the faces displayed. Whereas previous
intranasal OXT studies reported enhanced recognition of
fearful faces and attenuated amygdala reactivity toward
fearful faces, OXT did not consistently modulate recognition
of or amygdala reactivity toward angry facial expressions
(39–41). The differences may be explained in the different
motivational tendencies inherent to the facial expressions,
such that the dominant response to angry expressions is
threat avoidance, whereas the dominant response to fearful
expressions is approach (42). Likewise, the observation that
OXT reduces amygdala habituation to unreciprocated coop-
eration in men (19) indicates that the effects of OXT on
habituation may be domain specific.

The amygdala exhibits rapid adaptations to repeated pre-
sentation of salient stimuli, including facial expressions (10),
and these changes might be a more reliable marker of
1086 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
amygdala function as assessed by fMRI activation (16,21).
Desensitization (habituation) of amygdala responses has
been most consistently reported, but amygdala sensitization
may also occur with repeated presentation of particularly
salient or aversive stimuli (14). The currently prevailing dual-
process framework proposes that the incremental (sensiti-
zation) and decremental (habituation) adaptations on the
physiological and affective level are based on independent
yet interacting processes (43). Sensitization has most
consistently been observed in response to repeated pre-
sentations of reward- and threat-related stimuli (43), and
sustained attention and less habituation to threat, including
angry facial stimuli, have been demonstrated on the behav-
ioral level (15,44). Consistently, increased neural responses
with repeated presentation of angry emotional stimuli have
been reported in limbic regions (15), including the amygdala
(14). Partly resembling these previous observations, we found
threat-specific amygdala sensitization in the control group
(ATD2-PLC), while OXT switched the direction of the
repetition-dependent adaptation, leading to a threat-specific
habituation in this region.

The amygdala is particularly sensitive to social information
(45) and exhibits widespread functional interactions with limbic
and prefrontal systems [e.g., (46)]. Previous studies in animals
have pinpointed anxiolytic effects of OXT to the amygdala
(20,47), and in humans, intranasal OXT enhanced
communication between the amygdala and prefrontal regula-
tory regions (48). By modulating anger-related habituation of
amygdala reactivity, OXT may facilitate rapid and flexible
adaptation to social threat signals (3,48).

In line with a previous rodent model demonstrating that the
anxiolytic effects of OXT are critically mediated by the 5-HT
system (7), we found that ATD1-induced reduction in seroto-
nergic signaling attenuated, but did not fully abolish, the ef-
fects of OXT on amygdala threat reactivity. Animal models
suggest that the anxiolytic action of OXT is mediated via
hypothalamic-amygdala projection neurons (20) as well as
OXT-sensitive receptors expressed on serotonergic raphe
neurons (7). Whereas initial data suggest that ATD1 may
reduce peripheral OXT levels in the absence of behavioral ef-
fects (49), the combination of ATD1 with PLC nasal spray did
not produce effects on amygdala reactivity in the present
study, arguing against an ATD1-induced nonspecific decrease
in OXT signaling.

In contrast, molecular imaging studies have demonstrated
that intranasal OXT induces central serotonin release (6,9), and
ATD1 leads to stable and selective reductions in central 5-HT
signaling (50), including attenuation of stimulated serotonin
release (50,51) and availability of serotonin in presynaptic
neurons (52). This suggests that pretreatment with ATD1

diminished OXT-induced serotonin release via OXT-sensitive
receptors on serotonergic raphe neurons, which in turn
attenuated anxiolytic effects mediated by serotonergic raphe-
amygdala pathways.

Given the increasing interest in the clinical application of
OXT to attenuate anxiety and exaggerated amygdala re-
sponses (2,39), the present results have important clinical im-
plications. First, deficient amygdala threat desensitization has
been reported in several psychiatric disorders, including anxi-
ety disorders and autism, and may represent a core
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pathological mechanism for the development and mainte-
nance of exaggerated anxious arousal (17,53), with the present
results indicating that OXT may facilitate amygdala threat
habituation. Second, serotonin dysfunction is a core biomarker
of anxiety and autism spectrum disorder (54,55). We found that
the strength of the effect of OXT on amygdala threat desen-
sitization was mediated by endogenous 5-HT levels, sug-
gesting that individuals with low endogenous serotonergic
levels may not fully capitalize on the anxiolytic effects of OXT,
and thus combined upregulation of 5-HT and OXT trans-
mission may be needed for optimal facilitation of anxiolytic
effects.

Findings of the present study need to be interpreted in the
context of the following limitations. First, we employed a
between-subject design, which may add heterogeneity to the
sample yet control for repeated assessment effects. Future
studies should employ crossover designs to validate the
robustness of the findings. Second, only male subjects were
investigated because of sex differences in 5-HT synthesis rate
(56) and the effects of OXT on amygdala reactivity (19,22), and
future studies need to determine whether the observed effects
generalize to women. Third, tryptophan levels were not
assessed in the present study; however, the study adhered to
previously validated ATD1 protocols, which have been shown
to induce robust and selective decreases in 5-HT signaling
(30,57). Fourth, blood levels of OXT were not assessed to
validate the increase in (peripheral) OXT levels; however, pre-
vious studies using identical intranasal administration pro-
tocols reported increased blood levels of OXT (58,59).
Nevertheless, the examination of blood-level measures,
particularly in the combined treatment group, may have
revealed important additional information on the interaction of
the two systems. Finally, the present study did not include
fearful facial expression stimuli. Based on previous studies
reporting that intranasal OXT may have pronounced effects on
the recognition of and amygdala reactivity toward fearful faces
[(39–41; however, see (60–64)] and that neural responses to
angry and fearful facial expressions are separable, future
studies should include fearful and angry faces to directly
compare effects on the divergent approach and avoidance
motivation induced by these facial expression (42).
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